Finite convergence of a fuzzy δ rule for a fuzzy perceptron

نویسندگان

  • Long Li
  • Jie Yang
  • Yan Liu
  • Wei Wu
چکیده

A learning algorithm based on a fuzzy δ rule is proposed for a fuzzy perceptron with the same topological structure as conventional linear perceptrons. The inner operations involved in the working process of this fuzzy perceptron are based on the max-min logical operations rather than conventional multiplication and summation etc. The initial values of the network weights are fixed as 1. Each value of the network weights is non-increasing in the training process, and it will keep unchange when the value is less than 0.5. The learning algorithm has an advantage, as is proved in this paper, that it converges in finite steps if the training patterns are fuzzily separable. This result generalizes a corresponding classical result for conventional linear perceptrons. Some numerical experiments for the learning algorithm are provided to support our theoretical findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Training Algorithm for a Fuzzy Perceptron and Its Convergence

In this paper, we present a new training algorithm for a fuzzy perceptron. In the case where the dimension of the input vectors is two and the training examples are separable, we can prove a finite convergence, i.e., the training procedure for the network weights will stop after finite steps. When the dimension is greater than two, stronger conditions are needed to guarantee the finite converge...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Nefclass | a Neuro{fuzzy Approach for the Classification of Data

In this paper we present NEFCLASS, a neuro{fuzzy system for the classiication of data. This approach is based on our generic model of a fuzzy perceptron which can be used to derive fuzzy neural networks or neural fuzzy systems for spe-ciic domains. The presented model derives fuzzy rules from data to classify patterns into a number of (crisp) classes. NEFCLASS uses a supervised learning algorit...

متن کامل

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by  Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...

متن کامل

A TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron

In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008